MATH 2050C Lecture 16 (Mar 15)

 $Recall: " $\xi - \xi$ def? for limit of functions"$ $f: A \subseteq \mathbb{R} \to \mathbb{R}$ CE R cluster point $\lim_{x \to c} f(x) = L \leq x$ \Rightarrow $\forall \xi > 0, \exists S = S(\xi) > 0$ s.t. $1f(x) - L$ | < ϵ whenever $x \in A$ o< $|x-c| < \delta$

Example: Use ϵ -S det? to show $lim_{x \to 1} \frac{x - 2}{x + 1} = -\frac{1}{2}$ $x - 1$ $x + 1$ 2 $2 - 2$ N ste: $f: A = R \setminus \{-1\} \to R$, $T(x)$ 1 is a cluster pt of $A = \mathbb{R} \setminus \{-1\}$. $frowf$: Let \S 30 be fixed but arbitrary.

$$
\begin{bmatrix}\n\text{Want}: \text{Choose } \delta = \delta(t) > 0 & \text{st.} \\
0 < |x - 1| < \delta \\
a > x + - 1 > 0\n\end{bmatrix} \Rightarrow \begin{bmatrix}\nx^2 - 2 \\
x + 1\n\end{bmatrix} - (-\frac{1}{2}) < \epsilon\n\end{bmatrix}
$$

$$
2\frac{3}{4574ME}
$$
 = 0 < 1x-1168

$$
\left\{\begin{array}{c} \left|\frac{x^{2}-1}{X+1}+\frac{1}{2}\right|=\left|\frac{2x^{2}+1+X+1}{2(X+1)}\right|=\left|\frac{2x^{2}+X-3}{2(X+1)}\right|\end{array}\right\}
$$
\n
$$
=\left|\frac{(X-1)(2X+3)}{2(X+1)}\right|=\frac{1}{2}\left|\frac{2X+31}{1X+11}\right|\left|\frac{X-1}{2}\times\frac{3}{2}S+5\right|
$$
\n
$$
\frac{1}{2}\left|\frac{1}{2X+11}\right|\left|\frac{1}{2X+11}\right|=\frac{3}{2}\left|\frac{2X+3}{2X+11}\right|=\frac{3}{2}\left|\frac{2X+3}{2X+11}\right|=\frac{3}{2}\left|\frac{2X+3}{2X+11}\right|=\frac{3}{2}\left|\frac{2X+3}{2X+11}\right|=\frac{3}{2}\left|\frac{2X+3}{2X+11}\right|=\frac{3}{2}\left|\frac{2X+3}{2X+11}\right|=\frac{3}{2}\left|\frac{2X+3}{2X+11}\right|=\frac{3}{2}\left|\frac{2X-3}{2X+11}\right|=\frac{3}{2}\left|\frac{2X-3}{2X+11}\right|=\frac{3}{2}\left|\frac{2X-3}{2X+11}\right|=\frac{3}{2}\left|\frac{2X-3}{2X+11}\right|=\frac{3}{2}\left|\frac{2X-3}{2X+11}\right|=\frac{3}{2}\left|\frac{2X-3}{2X+11}\right|=\frac{3}{2}\left|\frac{2X-3}{2X+11}\right|=\frac{3}{2}\left|\frac{2X-3}{2X+11}\right|=\frac{3}{2}\left|\frac{2X-3}{2X+11}\right|=\frac{3}{2}\left|\frac{2X-3}{2X+11}\right|=\frac{3}{2}\left|\frac{2X-3}{2X+11}\right|=\frac{3}{2}\left|\frac{2X-3}{2X+11}\right|=\frac{3}{2}\left|\frac{2X-3}{2X+11}\right|=\frac{3}{2}\left|\frac{2X-3}{2X+11}\right|=\frac{3}{2}\left|\frac{2X-3}{2X+11}\right|=\frac{3}{2}\left|\frac{2X-3}{2X+
$$

O

Prop:	Limfix	if exists, is unique.
9:	Exercise!	
1:	Exercise!	
2:	How are the concept of limit for seg.	
and functions related?		
Tim:	Sequential Criteria	$f:A\rightarrow R$
Limfix	1:	$\sqrt{2}$
Wseg. (Xu) in A sit.		
Wseg. (Xu) in A sit.		
Wseg. (Xu) in A sit.		
Wseg. (Xu) in A sit.		
Wseg. (Xu) in A sit.		
Wseg. (Xu) in A sit.		
Clasir of:	For	
Wseg. (Xu) in A st.		
Chasif	1:	
Post:	1:	
1:	1:	
Let (Xu) be any seg in A st.		
1:	1:	
1:	1:	
1:	1:	
1:	1:	
1:	1:	
1:	1:	
1:	1:	
1:	1:	
1:	1:	
1:	1:	
1:	1:	
1:	1:	
1:	1:	
1:	1	

$$
\exists S = S(E) \land 0 \text{ set}
$$
\n
$$
|f(x) - L| < \epsilon
$$
\nwhere $K \in A$
\nSince $lim(X_n) = C$, for the \$30 above,
\n
$$
\exists K = K(S) \in \mathbb{N}
$$
 s.t. $x_n \in A$
\n
$$
0 < |x_n - c| < S
$$
\nwhen $n \geq k$
\n
$$
\Rightarrow |x_n - c| < S
$$
\nwhen $n \geq k$
\n
$$
\Rightarrow |x_n - c| < S
$$
\nwhen $n \geq k$
\n
$$
\Rightarrow |x_n - c| < S
$$
\n
$$
\Rightarrow |x_n - c| < S
$$
\n
$$
\Rightarrow |x_n - c| < \epsilon
$$
\n
$$
\Rightarrow |x_n - c| < \epsilon
$$
\n
$$
\Rightarrow |x_n - c| < \epsilon
$$
\n
$$
\Rightarrow |x_n - c| < \epsilon
$$
\n
$$
\Rightarrow |x_n - c| < \epsilon
$$
\n
$$
\Rightarrow |x_n - c| < \epsilon
$$
\n
$$
\Rightarrow |x_n - c| < \epsilon
$$
\n
$$
\Rightarrow |x_n - c| < \epsilon
$$
\n
$$
\Rightarrow |x_n - c| < \epsilon
$$
\n
$$
\Rightarrow |x_n - c| < \epsilon
$$
\n
$$
\Rightarrow |x_n - c| < \epsilon
$$
\n
$$
\Rightarrow |x_n - c| < \epsilon
$$
\n
$$
\Rightarrow |x_n - c| < \epsilon
$$
\n
$$
\Rightarrow |x_n - c| < \epsilon
$$
\n
$$
\Rightarrow |x_n - c| < \epsilon
$$
\n
$$
\Rightarrow |x_n - c| < \epsilon
$$
\n
$$
\Rightarrow |x_n - c| < \epsilon
$$
\n
$$
\Rightarrow |x_n - c| < \epsilon
$$
\n
$$
\Rightarrow |x_n - c| < \epsilon
$$
\n
$$
\Rightarrow |x_n - c| < \epsilon
$$
\n
$$
\Rightarrow |x_n - c| < \epsilon
$$
\n
$$
\Rightarrow |x_n - c| < \epsilon
$$
\n
$$
\Rightarrow |x_n -
$$

Take
$$
S := \frac{1}{n}
$$
, $n \in N$, then get $x_n \in A$
\nand $0 < |x_n - c| < \frac{1}{n}$ \t\t\t\t $m \in N$
\nand $(f(x_n) - L) \ge \epsilon_0$ \t\t\t\t $m \in N$
\nConsider this ϵ_0 (x_n) in A, note that
\n
$$
\begin{cases}\nx_n \neq c \quad \forall n \in N \quad \text{is restricted} \\
\text{lim}(x_n) = c\n\end{cases}
$$
\n
$$
B u T : \text{ we do } M \subseteq I \text{ here } \lim_{n \to \infty} (f(x_n)) = L
$$
\nbecause $f(x)$, A $contradiction!$
\n
$$
B e c e n L e x + C e f(x)
$$
\n
$$
B e f(x)
$$
\n<

Cor 2 : "Divergence Criteria"
f "DIVERGES" f'' DIVERGES["] f'' seg. (x_n) in A s.t as $x \rightarrow c$
ie f DOES NOT lim $(x_n) = c$

Converge to any L GH $\left\{ \mathcal{B}(\mathbf{X}_{n})\right\}$ is divergent. $as x - c$.

Proof of Cor $2 : 2 < 9$ Pf: Exercise.

$$
``\Rightarrow" \text{ Argue by Cartesian.}
$$
\nSuppot f diverge as $x \rightarrow c$, but the R.H.S.

\nfails to hold: i.e. \forall seq. (Xn) in A set.

\n(*)

\n
$$
\begin{cases}\nX_n \neq c \quad \forall n \in \mathbb{N} \\
\text{lim}(X_n) = c\n\end{cases}
$$
\nwe have (fixn) must be convergent, so

\nLim $(f(x_n)) = L$ for some $L \in \mathbb{R}$

\nCauchson: This may depend on the choice of (X_n) .

Claim: The limit L Des3 NOT depend on (Xu)
\nPF: Suppose (Xu), (Xu') satisfy "y' (H), and
\n
$$
lim (f(Xu)) = L
$$
, L' = $lim (f(Xu))$.
\nConsider the new "approxariant" { $2P$ ''
\n $(y_{n}) = (x_{1}, x_{1}', x_{2}', x_{3}, x_{3}', ...)$
\nthen $y_{n} + c$ Un c IV and $lim (y_{n}) = c$
\nSo, by hypothesis nJ on R.H.S..
\n $(f(y_{n})) := (fun), f(x_{n}), f(x_{n}), f(x_{n}) ...$
\nis CONVERGENT, so L = L'

Let's look at ^a few examples

Example 2: ("The sign function") $f: A = \mathbb{R} \setminus \{0\} \rightarrow \mathbb{R}$ $+ x > 0$ $\ddot{\tau}$ x < c $f(x) = \begin{cases} 1 & \text{if } x > 0 \\ -1 & \text{if } x < 0 \end{cases}$ is $f(x) = \frac{1}{|x|}$ $f(x) = \frac{1}{|x|}$ $Claim:$ $\mathcal{L}im \ \frac{\times}{\times}$ does NOT exist! $X \rightarrow 0$ or $(1 - x)^{n} x^{n}$ Π Take $(x_n) = \left(\begin{array}{c} n \end{array}\right) \rightarrow 0$ $\beta_{\mu}T$ $(f(x_{n})) = (f(-1)^{n})$ is DIVERGENT

